
The fraction of radiation absorbed
depends on the pathlength
occupied by the target gas, the
wavelength of radiation being
measured and the molecule itself.
The law of absorption, originally
stated in 1729 in a memoir by
P. Bouguer, was later rediscovered
by Lambert and was expressed as:

-dI/I = b dx

where I is the intensity of radiation at a distance x from its entry into the
medium and b is called the absorption coefficient. On integration with
the boundary condition I = Io at x=0 we obtain:

I = Io e-bx and therefore ln(I/Io) = ln(Τ ) = -bx

where Τ is known as the Transmittance. The preference for decadic
logarithms in spectroscopy fields uses the definition log(I/Io) = -ax where
a is the (linear) absorption coefficient. In 1852, Beer showed, for many
solutions of absorbing species in transparent media, that the coefficient
a is proportional to the concentration of species c. Thus Beer’s Law is:

log(I/Io) = -εcx

where c is the molar concentration, and ε is called the molar absorption
coefficient or extinction coefficient. These absorption laws are the bases
for various spectroscopic methods of analysis and are obeyed strictly
only for monochromatic radiation. This is an important point in the
discussion that follows.

What we are interested in measuring in the infrared region is
absorption of radiation due to transitions in the vibration-rotation energy
levels of target molecules. Such absorption only occurs if there is a
change in dipole moment during these energy level transitions
and therefore diatomic symmetric molecules such as H2, O2 and Cl2
display no absorption in the gaseous state. Other molecules have
vibration-rotation spectra and absorb radiation in the infrared region.
The absorption arises from transitions between definite rotational energy
levels belonging to definite vibrational levels. These transitions occur
when a photon of infrared radiation of the appropriate wavelength is
absorbed and the selection rules for such transitions are defined as
ΔV = ±1 and ΔJ = ±1 for the corresponding vibrational and rotational
levels. In certain cases (eg diatomic molecules with angular momentum
about the internuclear axis such as NO) we can also have ΔJ = 0.
So a vibration-rotation spectrum may display 3 branches where ΔV = ±1
corresponding to the 3 cases ΔJ = -1 (P branch, lower energy, longer
wavelength), ΔJ = 0 (Q branch) and ΔJ = +1 ( R branch, higher energy,
shorter wavelength). A good example is given by the infrared spectrum
of methane shown below. The spectrum is somewhat complicated
by combination bands but it does show the salient features of
vibration-rotation spectra.:

In NDIR sensors we measure the intensity of a band of wavelengths and
this band is defined largely by the bandpass of the optical filters fitted
to the detectors. Typically a dual detector is used which has two active
elements: One is fitted with a passband filter that allows radiation which

is not absorbed by target gases to pass and this forms a reference
signal, the other is fitted with a passband filter that does allow radiation
which is absorbed by target gases to pass. This forms the active signal
and the intensity of radiation reduces as target gas concentration
increases. The development of miniature plug in NDIR sensors, the first
published UK sensor being described in 19981, has popularised the
technique dramatically. The main problem is solving the requirement to
achieve sufficient pathlength (in order to have sufficient sensitivity to
gas) in such a restricted volume and all three independent UK sensor
companies with NDIR technology based in Essex2 have solved this
problem in their own unique ways. Such sensors, in common with other
miniature sensors from UK and overseas companies, demonstrate
deviations from Beer’s Law. This is not necessarily a problem and
application notes relating to the first such sensor1 derived an empirical
relationship which is loosely based on Beer’s Law; this relationship has
been adopted by others. Typical examples of such deviations are
shown in the Transmittance curves below for the Clairair Cirius1 sensor
and the E2V Technologies IR13BD sensor (span values equalised) with
them both compared to a Beer’s law estimate based on matching the
lowest concentration point:

The generally adopted empirical modification of the Beer’s Law
relationship is given by:

(1 – I/Io) = S*(1 – exp(-α * c β )

where S is interpreted as the span of the sensor, c is the gas
concentration and both α and β are constants dependent on the gas
type and concentration units (%volume, %lel, ppm, etc). Clearly, if S = 1
and β = 1 this empirical relationship reduces to Beer’s Law with α
equating to εx. So what causes the deviations from Beer’s Law?
The methane spectrum gives us a clue, as does the Kubelka Monk
theory3 which considered absorption, reflection and scattering.

Consider a passband optical filter intended for a hydrocarbon gas
sensor, a typical example being a broad band filter with centre
wavelength of 3008cm-1 (3.325 micron) and a HPBW of 160nm4.
Now consider the methane spectrum above. It is clear that each
individual wavelength within the range of the passband filter makes it’s
own contribution to the overall signal, effectively each wavelength has
its own absorption coefficient (discussed above and designated ε).
Some wavelengths have ε = 0 as can be seen in the methane spectrum
both between the vibration-rotation lines and beyond the range of the
spectral plot. So what we see is a kind of integrated absorption
coefficient over the passband range of the optical filter. If we also
consider wavelengths that can be detected beyond the range of the
passband filter (small out of band transmission through the filter caused
by the substrate material) and angle of view effects then we have a
combination of absorbed and unabsorbed wavelengths being
detected together.

So we can consider that we have 2 intensities of infrared radiation
being measured, Ia which is that which can be absorbed by the target
gas (to varying degrees dependent on wavelength) and Iu which is that
which is not absorbed by target gas. This modifies the Beer’s Law

Non Dispersive InfraRed sensors function by monitoring
the absorption of infrared radiation in the wavelength

range affected by target gases, typically in the
3-5 micron wavelength range. Aliphatic hydrocarbons
absorb in this region due to the fundamental C-H bond
stretches and carbon dioxide absorbs in this region due

to the fundamental asymmetric O=C=O stretch.
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expression since I = Ia + Iu and we assume Iu does not change with gas
concentration. With the boundary condition Io = Ia(o) + Iu and since
we can only measure I and Io then if we assume Iu is a fixed
percentage of Io and denoted by Iu = γ Io then we can modify the
initial differential equation above to:

-dI/I = -dI/Ia = -dI/(I – γ Io) = b dx.

On integration with the boundary condition I = Io at x=0 we now obtain:

(I – γ Io) / (Io – γ Io) = (I – γ Io) / (Io(1 – γ )) = e-bx

This leads to:

I/Io = γ + (1 – γ ))e-bx

The percentage of absorbing radiation is therefore given by (1 – γ ) and
this basically equates to the sensor span (denoted S above) for the
given target gas (i.e. the maximum amount of radiation that can be
absorbed) so we then have:

I/Io = 1 - S + Se-bx = 1 – S(1 - e-bx)

And rearranging leads to the format of the empirical modification of
Beer’s law mentioned above but without a power term consideration:

(1 – I/Io) = S*(1 – exp(-α * c )

So we have deduced the basic theory behind the adopted empirical
relationship and now we have to consider the power term effect.
Without the power term we see the empirical transmittance curve bend
away from the Beer’s law curve in the observed direction but not by
enough to explain the observed deviations fully as shown below:

So we need to consider the reason the power term appears. If we
consider a miniature plug in sensor optic then by necessity the optic has
to be folded in some way in order to achieve sufficient pathlength. This
leads to the possibility of numerous alternative routes for radiation to
reach the detector from the source, mainly through different internal
reflections against internal optical structures. This in turn means that
there are, in effect, a number of different pathlengths apparent in the
sensor. In effect this leads to some distortion of the observed
transmittance change since the longer pathlengths will make a larger
contribution than the shorter pathlengths. Perhaps more important than
this is the fact that the detector sees a passband of wavelengths and
each wavelength has its own extinction coefficient. This means that the
detector sees a summation of the effect of each individual wavelength
within the passband of its optical filter. In addition, angle of view effects
(especially changes in this effect with temperature) result in the
detector seeing wavelengths that extend beyond the passband
spectrum which is normally given at normal incidence. Therefore the
intensity observed, I = Ia + Iu, can be modified in that Ia can be
considered as a summation of individual intensities at individual
wavelengths. Therefore we can consider:

Ia = ∑ (Ia)λ

Where the summation covers the “active” absorbing wavelengths
within the passband of the detector. Since Beer’s Law strictly is obeyed
by monochromatic radiation we can consider it as applying individually
to each wavelength. As such the relationship between intensity and
concentration observed by the detector becomes modified from I=Io
e-bx by combining it with the summation to give:

Ia = ∑ ( Io e-bx)λ

Where the extinction coefficient b has a unique value at every
wavelength λ and therefore Io is also unique at each wavelength.

The problem is that we only measure the intensity so cannot separate
the contribution of the extinction coefficient b from the contribution
of the gas concentration x. It can be shown that if we consider a
summation of exponents then we can derive a power term relationship.
For example, if we simply sum 10 values of bx where b has values from
0.1 to 1.0 in 0.1 increments and x varies from 0 to 10.5 in 1.5 increments
we can fit the data to a power term expression as shown below:

This tells us that the summation generates the same curve as a power
term relationship where we have a constant exponential term and a
power term is introduced into x. This shows that we can therefore
consider the summation of individual Beer’s Law components at
individual wavelengths into a single passband related expression
identical to the empirical expression above:

(1 – I/Io) = S*(1 – exp(-α * c β )

So we can now explain both the exponential modification to Beer’s Law
and the power term within that modified expression whilst relating it
back to Beer’s Law itself.

If we apply it to the transmittance curves above we now get an
extremely good fit to the data:

This expression is quite forgiving, small changes to the exponential
constant and the power term do not have major effects on the
curvature and so they allow transmittance curves to be fitted quite
well. Changing the exponent and/or the power term gives fits to
transmittance curves for different gases and this is useful where one finds
general aliphatic hydrocarbon responses have similar curves since that
allows one set of coefficients to be used for a number of target gases
and the correlation is simply catered for in determining the span
during calibration. A good example of the span contribution is when
comparing the Clairair Cirius 2 CO2 sensor with the Alphasense CO2

sensor: They have quite similar power terms over the range 0-5%
volume CO2 but have quite different exponent and span values, the
Alphasense sensor having a very high sensitivity due to the unique
optical characteristics of that sensor. It is also interesting to note that at
low concentrations the power term often reduces to the value 1.0, a
typical example being a %volume carbon dioxide sensor over the ppm
range; this is because the summation of the exponents does not cause
a large distraction at low concentrations. This can also be seen in the
above plots where for concentrations up to 0.5% volume methane we
have Beer’s Law, the empirical expression and the power term
expression all giving good fits to the data.

We believe this is the first time the power term inclusion in the
empirical expression has been mathematically explained.
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